Pearson Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE

In Chemistry (4CH0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4CH0_1C_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	M1 melting		
M2 evaporation			
M3 sublimation	Any three from M1 (Arrangement of particles) irregular M2 large gaps between them /far apart /widely spaced M3 random movement / move freely M4 move (very) quickly	ALLOW spread out	3
(b)	IGNORE references to kinetic energy		

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
fractional distillation \\
kerosene - fuel for aircraft / heaters / lamps \\
bitumen - roads / roofing
\end{tabular} \& \begin{tabular}{l}
ALLOW fractionation /fractionating \\
REJECT distillation on its own \\
ALLOW paraffin heaters/lamps
\end{tabular} \& 1

2

\hline \multirow[t]{5}{*}{3 (b) (i)} \& M1 alkanes \& \& 2

\hline \& M2 (because) $\mathrm{C}_{20} \mathrm{H}_{42}$ fits general formula of alkanes/ $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ \& | ALLOW contains no double bonds / has only single bonds / saturated hydrocarbon |
| :--- |
| IGNORE reference to name ending | \&

\hline \& silica or alumina \& ACCEPT silicon dioxide/ aluminium oxide/ aluminosilicates /zeolites \& 1

\hline \& \& ACCEPT correct formulae i.e. $\mathrm{SiO}_{2} /$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ \&

\hline \& $\mathrm{C}_{20} \mathrm{H}_{42} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{8} \mathrm{H}_{18}$ \& Penalise incorrect use of case, superscripts etc. \& 1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
(c)	M1 consists of hydrogen/H and carbon/C (atoms) M2 only	REJECT hydrogen and carbon molecules REJECT atom/mixture containing H and C M2 dep on hydrogen and carbon in M1	2
	Contains only (carbon-carbon) single bonds	ALLOW does not contain double /multiple bonds	1
	M1 bromine (water)	ACCEPT use of KMnO_{4}	3
	M2 with unsaturated goes colourless / decolourises	IGNORE clear /discoloured If initial colour stated must be correct. ACCEPT any combination of brown/orange/yellow	
	M3 with saturated no change /stays orange	ACCEPT any combination of brown/orange/yellow	
(d) $\begin{aligned} & \text { (i) } \\ & \\ & \\ & \\ & \text { (ii) }\end{aligned}$	but-1-ene	ACCEPT 1-butene ALLOW 1-butylene	1
		ALLOW cyclobutane ALLOW methyl cyclopropane	1
	OR		

Question number	Answer	Notes	Marks
4 (a) (i) (ii)	M1 (electrostatic) attraction between bonding/shared pair of electrons and M2 (both) nuclei of atoms (in the bond) OR M1 bonding /shared pair of electrons M2 attracted to (both) nuclei of atoms (in the bond) M1 two shared pairs of electrons between two carbon atoms M2 rest of molecule correct	No M2 if reference to just one nucleus No M2 if reference to just one nucleus ALLOW any combination of dots and crosses. M2 dep on M1	2
(b) (i) Clip together (ii)	M1 intermolecular forces (of attraction) /(attractive) forces between molecules are weak M2 little (heat/thermal) energy required to overcome these forces (in B) stronger forces (of attraction) (between molecules than in A)	ALLOW weak intermolecular bonds /weak bonds between molecules IGNORE less energy ALLOW bonds for forces if intermolecular mentioned or implied in M1 0 marks if implied that covalent bonds break ALLOW bonds for forces if intermolecular mentioned in (i) ALLOW molecules of B are larger than those of A	2

(iii)	$\text { M1 58/[(2x12) + (5×1)] or 58/29 (= } 2)$ $\mathrm{M} 2 \mathrm{C}_{4} \mathrm{H}_{10}$	ALLOW the relative formula mass of B is greater than that of A Correct answer alone scores 2 marks	2
(c)	M1 giant (covalent structure) EITHER M2 many/ strong (covalent) bonds need to be broken OR M3 large amount of (heat/thermal) energy needed to break the bonds	REJECT giant bond No M2 or M3 if reference to intermolecular forces	2

(iii)	H^{+}	ACCEPT $\mathrm{H}_{3} \mathrm{O}^{+}$	1
(iv)	orange	ALLOW yellow	

Total for Question 5 = 10 marks

$\left.\begin{array}{|c|l|l|l|}\hline \text { (d) } & & \begin{array}{l}\text { reactants present /most } \\ \text { particles present/ most } \\ \text { gas is produced }\end{array} \\ & \text { M1 rate increases more particles in same volume } & \text { M3 so more (successful) collisions } & \begin{array}{l}\text { M4 per unit time } \\ \text { ACCEPT particles closer } \\ \text { together } \\ \text { more frequent collisions } \\ \text { scores M3 and M4 } \\ \text { If reference to gaining } \\ \text { energy MAX 1 }\end{array}\end{array}\right\}$

Question number	Answer	Notes	Marks
$7 \text { (a) (i) }$ (ii)	the greater the relative atomic mass the higher the boiling point ORA do not (easily) gain/lose/share electrons	ALLOW positive correlation ALLOW full outer shell /energy level (of electrons)	1 1
(b)	all have seven/same number of electrons in outer/valence shell/outer energy level	ALLOW all need to gain one electron to have a full outer shell ALLOW all their electron configurations end with 7	1
(c) (i)	$\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$	ALLOW fractions /multiples IGNORE state symbols even if incorrect	1
(ii)	orange	ALLOW brown / yellow / any combination of brown/orange/yellow	1
(iii)	M1 no reaction as bromine less reactive than chlorine ORA M2 so bromine cannot displace chlorine	Penalise incorrect use of chloride once only	2
(iv)	M1 iodide (ions)/l- lose electrons so oxidised M 2 chlorine $/ \mathrm{Cl}_{2}$ gains electrons so reduced	REJECT reference to iodine instead of iodide	2

	OR M1 iodide (ions)/l- oxidised and chlorine $/ \mathrm{Cl}_{2}$ reduced M2 iodide (ions)/l- lose electrons and chlorine/Cl2 gains electrons	If incorrect reference to iodine in either or both M1 and M2 MAX 1 mark IGNORE both oxidation and reduction occur (in the same reaction)
7 (d) (i) (ii)	$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ M1 (beaker A) litmus stays blue/no change to litmus M2 hydrogen chloride does not ionise /does not form H^{+}ions / remains as molecules /does not form hydrochloric acid M3 (beaker B) litmus turns red M4 (hydrogen chloride forms) hydrogen ions $/ \mathrm{H}^{+}$ions/hydrochloric acid (forms)	ALLOW fractions/multiples IGNORE state symbols even if incorrect ALLOW litmus turns blue ALLOW does not dissociate No M1 if references to methylbenzene/solution being alkaline or methylbenzene reacting REJECT litmus paper turns red and then bleaches IGNORE acidic solution /acid forms

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
8 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 not making a valid conclusion because could also be zinc or aluminium ions /could be any of the three ions \\
M2 because not seen effect of adding excess sodium hydroxide OWTTE \\
M1 flame (test) \\
M2 brick red/ orange-red
\end{tabular} \& \begin{tabular}{l}
ACCEPT zinc and aluminium also/all three ions form white precipitates \\
ALLOW description of flame test \\
IGNORE burn it/heat it \\
IGNORE red or orange alone \\
M2 dep on M1 or mention of flame in M2
\end{tabular} \& 2

2

\hline | (b) (i) |
| :--- |
| (ii) | \& | M1 reheat/heat again (and reweigh) |
| :--- |
| M2 until constant mass (achieved) |
| $\mathrm{M} 1 \operatorname{mass}\left(\mathrm{H}_{2} \mathrm{O}\right)=(6.1-5.2)=0.9(\mathrm{~g})$ |
| $\mathrm{M} 2 n\left(\mathrm{AB}_{2}\right)=5.2 \div 208$ |
| AND $n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.9 \div 18$ |
| M3 ratio of $A B_{2}$ to $H_{2} \mathrm{O}$ is $0.025: 0.05 / 1: 2$ $\mathrm{M} 4 \mathrm{x}=2$ | \& | Heat to constant mass scores M1 and M2 |
| :--- |
| M3 subsumes M2 |
| accept $\mathrm{AB}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ | \& 2

4

\hline 8 (c) \& | M1 add nitric acid/ HNO_{3} |
| :--- |
| M 2 add silver nitrate (solution) $/ \mathrm{AgNO}_{3}$ |
| M3 white precipitate forms | \& | If incorrect acid or an alkali added then M2 and M3 can be scored |
| :--- |
| M3 dep on addition of silver nitrate | \& 3

\hline
\end{tabular}

		If any other incorrect reagent added e.g. barium chloride then only M1 can be scored	
$\begin{array}{ll} \hline \text { (d) } & \text { (i) } \\ \text { clip } & \\ & \text { (ii) } \end{array}$	$[208-(2 \times 35.5)=] 137$ A is barium/Ba	ALLOW Ba ${ }^{2+}$ ALLOW ECF from an incorrect calculation if answer is a group 2 metal or d block metal	1 1

Total for Question 8 = 15 marks

Total for Question 9 = 12 marks

Question number	Answer	Notes	Marks
(b) (i) (ii) (iii)	M1 0.02270×0.080 OR $\quad \frac{22.70 \times 0.080}{1000}$ M2 $0.001816 / 1.816 \times 10^{-3}(\mathrm{~mol})$ M2 from (i) x 2 / 0.003632 / 3.632 x 10^{-3} (mol) M1 answer from (ii) $\div 0.025$ / $0.003632 \div 0.025$ OR M1 $\frac{\text { answer from (ii) } \times 1000}{25}$ M2 $0.14528 / 1.4528 \times 10^{-1}$ ($\mathrm{mol} / \mathrm{dm}^{3}$)	do not penalise missing trailing zeros 0.002 scores 1 mark only ACCEPT 1.816 for 1 mark Correct answer without working scores 2 ALLOW ECF only if division by 25 alone ACCEPT any number of sig fig except one Correct answer without working scores 2	2

Question number	Answer	Notes	Marks		
10 (c)	M1 heat/boil until crystals form in a sample of solution that has been removed or cooled OWTTE	ACCEPT heat/boil to produce a (hot) saturated/concentrated solution	4		
ACCEPT heat/boil until crystals					
start to form					
ALLOW heat/boil to crystallisation					
point					
ALLOW (heat/boil to) evaporate				\quad	M2 cool/leave (the solution) until
:---					
crystals form of the water					
M3 filter (to obtain the crystals)					

